Commutative integral bounded residuated lattices with an added involution
نویسندگان
چکیده
By a symmetric residuated lattice we understand an algebra A = (A,∨,∧, ∗,→,∼, 1, 0) such that (A,∨,∧, ∗,→, 1, 0) is a commutative integral bounded residuated lattice and the equations ∼∼ x = x and ∼ (x ∨ y) =∼ x∧ ∼ y are satisfied. The aim of the paper is to investigate properties of the unary operation ε defined by the prescription εx :=∼ x → 0. We give necessary and sufficient conditions for ε being an interior operator. Since these conditions are rather restrictive (for instance, on a symmetric Heyting algebra ε is an interior operator if and only the equation (x → 0) ∨ ((x → 0) → 0) = 1 is satisfied) we consider when an iteration of ε is an interior operator. In particular we consider the chain of varieties of symmetric residuated lattices such that the n iteration of ε is a boolean interior operator. For instance, we show that these varieties are semisimple. When n = 1, we obtain the variety of symmetric stonean residuated lattices. We also characterize the subvarieties admitting representations as subdirect products of chains. These results generalize and in many cases also simplify, results existing in the literature. Key word and phrases: residuated lattices, pseudocomplemented residuated lattices, stonean residuated lattices, order reversing involutions, interior operators. 2000 Mathematics Subject Classification: 03B47, 03G10, 03G25, 06B99.
منابع مشابه
FUZZY CONVEX SUBALGEBRAS OF COMMUTATIVE RESIDUATED LATTICES
In this paper, we define the notions of fuzzy congruence relations and fuzzy convex subalgebras on a commutative residuated lattice and we obtain some related results. In particular, we will show that there exists a one to one correspondence between the set of all fuzzy congruence relations and the set of all fuzzy convex subalgebras on a commutative residuated lattice. Then we study fuzzy...
متن کاملMinimal varieties of residuated lattices
In this paper we investigate the atomic level in the lattice of subvarieties of residuated lattices. In particular, we give infinitely many commutative atoms and construct continuum many non-commutative, representable atoms that satisfy the idempotent law; this answers Problem 8.6 of [12]. Moreover, we show that there are only two commutative idempotent atoms and only two cancellative atoms. Fi...
متن کاملCommutative bounded integral residuated orthomodular lattices are Boolean algebras
We show that a commutative bounded integral orthomodular lattice is residuated iff it is a Boolean algebra. This result is a consequence of [7, Theorem 7.31]; however, our proof is independent and uses other instruments.
متن کاملMinimal Varieties of Representable Commutative Residuated Lattices
We solve several open problems on the cardinality of atoms in the subvariety lattice of residuated lattices and FL-algebras [4, Problems 17–19, pp. 437]. Namely, we prove that the subvariety lattice of residuated lattices contains continuum many 4-potent commutative representable atoms. Analogous results apply also to atoms in the subvariety lattice of FLi-algebras and FLo-algebras. On the othe...
متن کاملConstructive Logic with Strong Negation as a Substructural Logic
Gentzen systems are introduced for Spinks and Veroff’s substructural logic corresponding to constructive logic with strong negation, and some logics in its vicinity. It has been shown by Spinks and Veroff in [9], [10] that the variety of Nelson algebras, the algebras of constructive logic with strong negation N, is term-equivalent to a certain variety of bounded commutative residuated lattices ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ann. Pure Appl. Logic
دوره 161 شماره
صفحات -
تاریخ انتشار 2009